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An equivalence relation on the tangent bundle of a manifold is defined in order

to extend a structure (modulated or not) onto it. This extension affords a

representation of a structure in any tangent space and that in another tangent

space can easily be derived. Euclidean symmetry operations associated with the

tangent bundle are generalized and their usefulness for the determination of the

intrinsic translation part in helicoidal axes and glide planes is illustrated. Finally,

a novel representation of space groups is shown to be independent of any origin

point.

1. Introduction

The choice of an origin point is a ubiquitous problem in

crystallography, especially in the case of space-group opera-

tions. Commonly, symmetry elements do not all intersect in

one point and no privileged point imposes itself as an origin.

In fact, rules for selecting the origin must be provided

(Wondratschek, 2002). Some privileged points corresponding

to high symmetries arise from a set of rules laid down by Paul

Niggli (1919), or also from an analysis of the normalizers of

the space group under consideration (Burzlaff & Zimmer-

mann, 1980). In any case, there will be some symmetry

elements not containing this point; and if the corresponding

symmetry operation does not possess any fixed point, the

translation part does not correspond to the intrinsic transla-

tion vector, which is somewhat uncomfortable.

In general, the translation part associated with the repre-

sentation of a Euclidean symmetry operation does not provide

information about the intrinsic translation of the operation.

Indeed, it is difficult to say whether the translation part of a

symmetry operation corresponds to the intrinsic translation or

to a specific choice of the origin, or both. It is only when the

origin point lies on the symmetry element of an operation that

the relevant information about the translation can be deduced:

if the translation vector is the zero vector, then the symmetry

operation contains a fixed point; if it is not the zero vector, it

corresponds to the intrinsic translation vector of the opera-

tion, which is then a helicoidal axis or a glide plane.

Earlier we have introduced (Kocian et al., 2009) the concept

of representation of a structure (modulated or not) in the

tangent space of a manifold. The importance of this repre-

sentation for symmetry operations was illustrated. Indeed,

such an operation is represented by a linear map between two

tangent spaces. As the tangent point (the ‘origin’ point of the

tangent space considered) may be arbitrarily chosen, it

appears legitimate to look for a possibility to easily switch

from one tangent space to another.

So, a formalism for the description of structures and

symmetry operations, independent of the concept of origin

point, is required. It is true that, once a coordinate system is

selected, there is only one origin in the sense that there is only

one point the coordinates of which are zero. However, thanks

to the concept of tangent space, one may have an infinity of

‘origin points’. Each of these simply corresponds to the zero

vector, the basis point of which is the tangent point under

consideration. Thus, an infinity of tangent-space representa-

tions of a crystal structure exists which may be regrouped in a

structure in the tangent bundle of the considered manifold, the

dimension of which is twice that of the structure in the

manifold. Such a higher-dimensional structure may easily be

obtained by introducing an equivalence relation on the

tangent bundle thanks to which the representation of a

structure in any tangent space is easily obtained. Corollarily, a

formalism in which symmetry operations no longer depend on

the choice of the origin point is afforded.

2. Fundamental equivalence relation on the tangent
bundle of a manifold

The need for defining an equivalence relation on the tangent

bundle arose from the study of the manifold- and tangent-

space representation of a lattice in Euclidean space. Let us

recall that any two points q and p in the Euclidean space may

be linked by a geodesic c (straight line), linearly para-

meterized (i.e. with a constant velocity) between 0 and 1, such

that c(0) = q and c(1) = p. As shown earlier (Kocian et al.,

2009), the point p corresponds in fact to the tip of the tangent

vector v of c at q. Let us focus on the point p: its position is

independent of the starting point q and the curve linking q to

p. Any curve parameterized linearly between 0 and 1, the

starting point of which is any point q and the end point is p, is

such that the tip of its tangent vector v at the starting point

corresponds to p. We may then say that a couple ðq; vÞ is

equivalent to another one ðq0; v0Þ if and only if cvð1Þ ¼ cv0 ð1Þ,



where cv and cv0 are the curves (linearly parameterized

between 0 and 1), the starting points of which are q and q0,

respectively, and the tangent vectors of which are v and v0,

respectively, at their starting point. Note that a couple ðq; vÞ is

in essence an element of the tangent bundle, as it is composed

of a point q (belonging to the manifold under consideration)

and a tangent vector v at q (belonging to the tangent space at q

of the manifold).

2.1. Equivalence relation

Let us now generalize these concepts to any manifold M,

parameterized by a one-to-one map H : Rn
! R

n (M is then

mostly Rn, it is just endowed with a curved coordinate system).

Let Hðq1Þ and HðpÞ be two points in M, with coordinates

Hðuq1
Þ and HðupÞ respectively [note that u ¼ ðu1; . . . ; unÞ are

the natural coordinates in Rn]. They may be linked by the

curve parameterized between 0 and 1:

cv1
: ½0; 1� ! M

t 7! cv1
ðtÞ ¼ H uq1

þ ðup � uq1
Þt

� �
;

the tangent vector of which at Hðq1Þ is

dcv1
ðtÞ

dt

����
t¼0

¼ _ccv1
ð0Þ ¼ dHq1

ðup � uq1
Þ ��= v1;

in components:

v1
i
¼
Xn

j¼1

@hiðuÞ

@uj

����
q1

ðup
j
� uq1

j
Þ;

where H ¼ ðh1; . . . ; hnÞ and dH is the differential map of H.

Let us select another point Hðq2Þ, with coordinates Hðuq2
Þ. It

may be linked by the curve, also parameterized between 0 and

1:

cv2
: ½0; 1� ! M

t 7! cv2
ðtÞ ¼ H uq2

þ ðup � uq2
Þt

� �
;

the tangent vector of which at Hðq2Þ is

dcv2
ðtÞ

dt

����
t¼0

¼ _ccv2
ð0Þ ¼ dHq2

ðup � uq2
Þ ��= v2;

in components:

v2
i
¼
Xn

j¼1

@hiðuÞ

@uj

����
q2

ðup
j
� uq2

j
Þ:

Note that both curves cv1
and cv2

have the same end point

HðupÞ.

Let us consider particularly the points Hðq1Þ and Hðq2Þ in

M, and the vectors v1 2 THðq1Þ
M and v2 2 THðq2Þ

M. A relation

� on the tangent bundle can be defined as follows:

Hðuq1
Þ; v1

� �
� Hðuq2

Þ; v2

� �
, cv1

ð1Þ ¼ HðupÞ ¼ cv2
ð1Þ;

where Hðuq1
Þ and Hðuq2

Þ are the coordinates of Hðq1Þ and

Hðq2Þ, respectively.

The relation � is an equivalence relation on the tangent

bundle of M (which in fact corresponds to the tangent bundle of

R
n).

Indeed, it is immediately seen that � is reflexive and

symmetric. The transitivity is shown by considering three

couples Hðuq1
Þ ; v1

� �
, Hðuq2

Þ ; v2

� �
and Hðuq3

Þ ; v3

� �
(where

the foot of v1, v2, v3 lies, respectively, in q1, q2, q3),

such that Hðuq1
Þ ; v1

� �
� Hðuq2

Þ ; v2

� �
and Hðuq2

Þ ; v2

� �
�

Hðuq3
Þ ; v3

� �
. Then, cv1

ð1Þ ¼ cv2
ð1Þ ¼ cv3

ð1Þ, where cv�
,

1 � � � 3, are curves the expression of which in coordinates is

cv�
: ½0; 1� ! M

t 7! cv�
ðtÞ ¼ H uq�

þ ðup � uq�
Þ t

� �
;

Thus, cv1
ð1Þ ¼ cv3

ð1Þ and Hðuq1
Þ ; v1

� �
� Hðuq3

Þ ; v3

� �
.

2.2. Equivalence class

Once an equivalence relation is defined, one may regroup

all equivalent elements in one set, called an equivalence class.

Let us do this for the equivalence relation � defined above.

Consider the point HðupÞ 2 M that may be written as

HðupÞ ; 0
� �

, a point of the tangent bundle TM, by way of the

natural immersion map � : M! TM. Then the curve

c : ½0; 1� ! M

t 7! cvðtÞ ¼ H up þ ð1� tÞw
� �

links any point cð0Þ ¼ Hðup þ wÞ to HðupÞ. As w is any

element ofRn and as H is one-to-one, then cð0Þ can also be any

point in Rn. The tangent vector of this curve at t = 0 [i.e. at

Hðup þ wÞ] is

_ccð0Þ ¼ �dHqðwÞ
�
�= v;

where q is the point with coordinates uq ¼ up þ w. In

components:

vi ¼
Pn
j¼1

�!i
jðup þ wÞwj;

where !i
jðup þ wÞ ��= ð@h

i=@ujÞðup þ wÞ is the component ði; jÞ

of the matrix �ðup þ wÞ representing dH. Thus, for the

equivalence relation �, the equivalence class of HðupÞ ; 0
� �

can be written as��
HðupÞ; 0

��
�
�
�=
�
Hðup þ wÞ; � �ðup þ wÞw

�
;

where w 2 Rn is a free n-dimensional parameter. In this class,

there is also the element
�
Hð0Þ; �ð0Þ up

�
(when w ¼ up); thus,

the same equivalence class may be described from this point:��
HðupÞ ; 0

��
�
¼
�
Hð ~wwÞ; �ð ~wwÞðup � ~wwÞ

�
:

Note that the classes are disjoint if H is a diffeomorphism (i.e.

when H is a one-to-one smooth map possessing a smooth

inverse). Indeed, let us consider two points
�
Hðup1

Þ ; 0
�

and�
Hðup2

Þ ; 0
�

of TM. Their equivalence classes are, respectively,

Hðup1
þ w1Þ; ��ðup1

þ w1Þw1

� �
;

Hðup2
þ w2Þ; ��ðup2

þ w2Þw2

� �
;
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where w1;w2 2 R
n are two parameters. Consider the point

HðuqÞ ; vq

� �
and suppose it belongs to both classes. This means

that there exists ~ww1; ~ww2 2 R
n such that

HðuqÞ; vq

� �
¼ Hðup1

þ ~ww1Þ; ��ðup1
þ ~ww1Þ ~ww1

� �
;

HðuqÞ; vq

� �
¼ Hðup2

þ ~ww2Þ; ��ðup2
þ ~ww2Þ ~ww2

� �
:

Since H is one-to-one, Hðup1
þ ~ww1Þ ¼ HðuqÞ ¼ Hðup2

þ ~ww2Þ

implies up1
þ ~ww1 ¼ uq ¼ up2

þ ~ww2. Thus

HðuqÞ; vq

� �
¼ HðuqÞ; ��ðuqÞ ðuq � up1

Þ
� �

;

HðuqÞ; vq

� �
¼ HðuqÞ; ��ðuqÞ ðuq � up2

Þ
� �

:

Since H is a diffeomorphism, � is a field of square matrices

of maximal rank. Thus ��1 exists and from the previous

equalities we have uq � up1
¼ ��ðuqÞ

�1 vq ¼ uq � up2
, hence

up1
¼ up2

and Hðup1
Þ ¼ Hðup2

Þ. The two classes coincide.

Note that for crystallographic applications, H is a one-to-

one map which is sometimes smooth only piecewise, and the

inverse of which is also piecewise smooth. This does not cause

any difficulties, because it can always be well approximated by

a diffeomorphism (H is a wavefunction which can be devel-

oped in a Fourier series and approximated by a smooth map

with a finite number of terms).

2.3. The Euclidean case

Let us consider the n-dimensional Euclidean manifold Rn

endowed with the natural coordinate system u ¼ ðu1; . . . ; unÞ.

The equivalence relation on the tangent bundle defined above

becomes very intuitive in this case. Indeed, recalling that in the

Euclidean case the end point of a geodesic linking two points q

and p, and linearly parameterized between 0 and 1, corre-

sponds to the tip of the tangent vector of this geodesic at q

(Kocian et al., 2009), the relation

ðuq1
; v1Þ � ðuq2

; v2Þ , cv1
¼ up ¼ cv2

ð1aÞ

may be written as

ðuq1
; v1Þ � ðuq2

; v2Þ , uq1
þ v1 ¼ uq2

þ v2: ð1bÞ

This means that two points q1 and q2, with coordinates uq1
and

uq2
, are related if the tip of the vectors v1 and v2 with initial

points q1 and q2, respectively, are at the same point (see Fig.

1). Recall that even if the end point p may be seen as the tip of

a vector (v1 or v2 in our case), this vector is element of a

tangent space and not of the manifold.

The equivalence class of a point ðup; 0Þ in the tangent

bundle of the Euclidean manifold is given by

½ðup; 0Þ�
�
¼ ðup þ w; �wÞ; where w 2 Rn: ð2Þ

Indeed, according to relation (1), any point q with coordinates

uq ¼ up þ w and vector �w are such that uq � w ¼

up þ w� w ¼ up þ 0 (¼ up). Expression (2) shows that the

point p, the coordinates of which in the Euclidean space are

up, is represented by the vector �w ¼ up � uq in the tangent

space at uq
�
�= up þ w. The equivalence class of ðup; 0Þ is called

the tangent-bundle representation of the point p.

As an example, let us find the tangent-bundle representa-

tion of a periodic lattice in the n-dimensional Euclidean space

� ¼ fB� j � 2 Zn
g;

where B 2 GLnðRÞ (i.e. B is an invertible n� n matrix). Each

point B� 2 � may be seen as an element of the tangent bundle

R
n
� R

n
¼ R

2n of the Euclidean manifold Rn, and written as

the couple ðB�; 0Þ. The equivalence class (the tangent-bundle

representation) of each point is then

½ðB�; 0Þ�
�
¼ ðB�þ w�; �w�Þ; where w� 2 R

n:

Thus, we obtain a kind of lattice in the tangent bundle, the

dimension of which is twice that of �. It may be written as

� ¼ fðB�þ w�; �w�Þ j � 2 Z
n; w� 2 R

n
g:

If for each � 2 Zn we choose w� ¼ �B�, we obtain repre-

sentatives of each class ½ðB� ; 0Þ�
�

that all belong to the

tangent space at the origin:

ð0 ; B�Þ; � 2 Zn;

Thus, we obtain the representation of the lattice � in the

tangent space at the origin. More generally, if we choose

w� ¼ uq � B�, where uq are the coordinates of a point q, all

representatives of each equivalence class belong to the same

tangent space at q:

ðuq; �uq þ B�Þ; � 2 Zn;

we obtain the representation of � in the tangent space at the

chosen point q. Fig. 2 shows the situation in the case of a one-

dimensional periodic lattice. Equivalence classes of each node

are straight lines of slope �1 passing through the corre-

sponding point.

2.4. The modulated case

Let us consider a manifold M, which is mostly Rn, but

endowed with a curved coordinate system. M is then para-

meterized by a one-to-one map H : Rn
! R

n, which is, for

crystallographic applications, a periodic wavefunction of the

position, u 7!HðuÞ ¼ Hðk � uÞ. In many concrete cases, H is

smooth piecewise only. But thanks to Fourier’s development,
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Figure 1
Illustration of the equivalence relation on the tangent bundle in the case
of the two-dimensional Euclidean manifold. Two couples ðuq1

; v1Þ and
ðuq2

; v2Þ are equivalent if and only if the tip of v1 is at the same point as
the tip of v2. The couple ðuq3

; v3Þ is not equivalent to the two previous
couples because the tip of v3 is not at p.



one can always find an appropriate smooth approximation

that is a diffeomorphism, such that the concepts introduced

above can be used.

In the Euclidean case, two couples ðuq1
; v1Þ and ðuq2

; v2Þ are

equivalent if and only if the tip of v1 corresponds to that of v2.

This equivalence is due to the fact that the tip of a vector

corresponds to the end point of a curve linearly parameterized

between 0 and 1, the starting point of which corresponds to the

foot of the vector. In the modulated case, this no longer holds

because the end point of a curve (in the modulated space)

parameterized between 0 and 1 does, in general, not corre-

spond to the tip of its tangent vector at the initial point (see

Fig. 3). Thus, the equivalence relation defined on the tangent

bundle is perhaps less intuitive in the modulated case

(compared to the Euclidean one), even if the principle is

exactly the same.

As seen previously, the equivalence class of a point

HðupÞ ; 0
� �

in the tangent bundle of the manifold (para-

meterized by H) is given by

HðupÞ; 0
� �� �

�
¼ Hðup þ wÞ; ��ðup þ wÞ w
� �

; w 2 Rn;

where � is the matrix representation of dH. From this

expression, we see that the point HðpÞ, the coordinates of

which in the manifold are HðupÞ, is represented, in the tangent

space at HðuqÞ
�
�= Hðup þ wÞ, by the vector ��ðup þ wÞw

¼ �ðuqÞ ðup � uqÞ. As in the Euclidean case, the equivalence

class of HðupÞ ; 0
� �

is called the tangent-bundle representation

of the point HðpÞ.

May the tangent-bundle representation of the modulated

lattice ~�� serve as example:

~�� ¼ fHðB�Þ j � 2 Zn
g;

where B 2 GLnðRÞ and H : Rn
! R

n is the one-to-one map

defining the modulation. Each point HðB�Þ of ~�� may be

written as an element HðB�Þ; 0ð Þ of the tangent bundle of the

manifold. Its tangent-space representation (equivalence class)

is then

HðB�Þ; 0ð Þ½ ��¼ HðB�þ w�Þ; ��ðB�þ w�Þw�ð Þ;

where w� 2 R
n. Thus, the set of elements

~�� ¼
��

HðB�þ w�Þ ; ��ðB�þ w�Þw�

�
j � 2 Zn; w� 2 R

n
�

forms a kind of lattice in the tangent bundle. For each � 2 Zn,

choosing w� ¼ uq � B�, the representatives of each class, all

belonging to the same tangent space at HðqÞ, are

HðuqÞ ; �ðuqÞ ð�uq þ B�Þ
� �

; � 2 Zn:

This is the representation of ~�� in the tangent space at the

chosen point HðqÞ. Typically, if uq ¼ uo ¼ 0, we find

Hð0Þ ; �ð0ÞB�ð Þ j � 2 Zn
� �

;

for the representation of ~�� in the tangent space at the origin.

Fig. 4 shows the situation in the case of a one-dimensional

modulated lattice, where the modulation is given by

u 7!HðuÞ ��= uþ A sinðkuÞ;

A; k 2 R. The equivalence class of any node a�, where a 2 Rþ
and w 2 R, is	

a�þ wþ A sin
�
kða�þ wÞ

�
; �w

�
1þ kA cos

�
kða�þ wÞ

��

:

Note that the term 1þ kA cos kða�þ wÞð Þ is the 1� 1 matrix

corresponding to the derivative of the map H at u ¼ a�þ w.

From this expression, we see that the representation of ~�� in

any tangent space (any ‘vertical’ cut) forms a periodic lattice,

in the sense that it is a Z-module. This result, already

presented in our previous work (Kocian et al., 2009), is a

consequence of the linearity of the derivative map and of the

fact that tangent spaces are vector spaces. Fig. 5 illustrates the

importance of the condition that H be one-to-one; as soon as

this condition is not satisfied, each ‘equivalence class’ crosses
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Figure 3
Illustration of the equivalence relation on the tangent bundle of a
manifold in the modulated case (modulated manifold). Two couples
ðHðuq1

Þ; v1Þ and ðHðuq2
Þ; v2Þ are equivalent if and only if the curves cv1

and cv2
, associated with the vectors v1 and v2, respectively, have the same

end point HðpÞ. The couple ðHðuq3
Þ; v3Þ is not equivalent to the two

previous ones, since the end point of the curve cv3
associated with v3 is

different from HðpÞ.

Figure 2
Representation of a one-dimensional periodic lattice in the tangent
bundle TR of the one-dimensional Euclidean manifold. TR can be seen as
the Cartesian product of R and R, that is R2 (to each point of R is
associated a one-dimensional tangent space R). Thus, a vertical cut
through any point q corresponds to the representation of the lattice in the
tangent space at q; this is shown on the left- and right-hand parts of the
figure.



itself and others. This is in fact completely normal, since M

does not have the structure of a manifold any more.

Thanks to the� equivalence relation on the tangent bundle

of a manifold, we can obtain the representation of a lattice,

therefore a crystal structure, in the tangent bundle of the

manifold. With this higher-dimensional structure, one can

easily find the representation of the crystal structure in any

tangent space. Moreover, it provides a continuous way for

passing from the manifold representation of a structure to any

tangent-space representation.

3. Symmetry operations in the tangent bundle

As shown earlier (Kocian et al., 2009), any symmetry opera-

tion � has two representations: one in the manifold and one in

the tangent space. In the first case, the operation is a map from

the manifold to itself, carrying points into other points. In the

second case, the operation is represented by a linear map

carrying vectors of one tangent space into vectors of another

one. Both representations contain the same information; the

second one is practical because the operation corresponds to a

linear map.

We have seen that the Euclidean manifold and any tangent

space are geometrically equivalent. In particular the Eucli-

dean manifold, endowed with the natural coordinate system,

and its tangent space at the origin are indistinguishable.

Indeed, it is only the concept of origin which distinguishes one

from the other. The representation of any point, or set of

points (e.g. a lattice or a crystal structure) in any tangent space

(especially that at the origin) of the Euclidean manifold is

completely equivalent to that in the manifold.

A symmetry operation acting on the Euclidean manifold is

represented by a matrix and a translation part which may or

may not correspond to the intrinsic translation of the opera-

tion. This is so, because the translation part does depend on

the choice of the origin. Two questions then arise: (i) How can

one determine the intrinsic translation of a symmetry opera-

tion? (ii) How can one derive the translation part in any

coordinate system, if the intrinsic translation is known? These

problems have already been treated in many books. We

propose here an alternative way that is based on the tangent-

space representation of a symmetry operation. Even if the

final conclusions are the same, the point of view is interesting

and the derivations will be instructive in their own right.

3.1. Finding the intrinsic translation

Let us consider an isometry � in the Euclidean manifold; its

representation in coordinates is given by

u 7! u0 ¼ Fuþ s;

where F 2 OnðRÞ and s 2 Rn. Note that in another coordinate

system in the Euclidean manifold (in which the metric tensor

is still constant everywhere), the relation above is the same,

the only difference lies in the fact that F is no longer ortho-

gonal, but still of determinant 	1. In the tangent-space

representation, this isometry is described by the linear map

d�q : TqR
n
! T�ðqÞR

n;

it carries vectors of the tangent space at a point q to vectors of

the tangent space at the point �ðqÞ.
Fig. 6 shows the equivalence of the two representations for

an inversion operation in the one-dimensional Euclidean

space. It also shows that if we consider the representation of

the point p in the tangent space at the inversion centre q, the

differential map d�q is an endomorphism of TqR. In fact, we
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Figure 5
If H is not a one-to-one map from Rn to M (which is in fact Rn as well), M
does in fact not have a manifold structure any more and the definition of
equivalence relation on the ‘tangent bundle’ becomes absurd: two
different ‘equivalence classes’ cross at least at one point, hence they are
connected.

Figure 4
Representation of a one-dimensional sinusoidal modulated lattice in the
tangent bundle TM of a (modulated) manifold. TM can also be seen as
the Cartesian product of R� R, where the first R corresponds to the
manifold M (it is just parameterized by a map different from the identity)
and the second to the tangent space at any point of M. A ‘vertical’ cut
through any point HðqÞ corresponds to the representation of the lattice in
the tangent space at HðqÞ; this is shown on the left- and right-hand parts
of the figure. Note that in such a space, the lattice is periodic (that is, a Z-
module).



see that the ‘distance’ between TqR and T�ðqÞR decreases if the

tangent point q approaches the symmetry element (inversion

centre), and will be 0, if the chosen tangent point lies on the

inversion centre.

There exist two kinds of isometries in the Euclidean

manifold, those containing at least one fixed point and those

without. For isometries with a fixed point, there exists a

tangent space at a point for which the differential map of the

isometry is an endomorphism of this tangent space. Let us now

define the distance between two tangent spaces as the distance

between the two associated tangent points (this is justified by

the fact that the tangent bundle of Rn is the Cartesian product

of Rn and Rn). For isometries without a fixed point then, there

exists a point such that the distance between the tangent space

at this point and the tangent space at its image point (through

the isometry) is minimal. In both cases, such a point may be

found by minimizing, using derivative techniques, the distance

between the two tangent spaces.

Thus, we need to find the distance function between a

tangent point q and its image q0 ¼ �ðqÞ through the symmetry

operation �, and calculate its derivative. Since a function and

its square have the same extrema, we shall rather calculate the

derivative of the square of the distance function. In order to

give a general formula, useful for crystallographic applica-

tions, we consider a more general, uncurved, coordinate

system x in the Euclidean space, in which the metric tensor is

still constant, but not necessarily diagonal. Such a situation

occurs, e.g., in the monoclinic or triclinic systems. In any

coordinate system for which the metric tensor is constant, a

Euclidean isometry � may be written in components as

x0i ¼
Pn
j¼1

f i
j xj þ si;

where f i
j is the component ði; jÞ of a matrix F of determinant

	1 and si is the component i of s 2 Rn. The distance between a

point q and its image q0 ¼ �ðqÞ is simply the length of the

straight line linking these two points; its square is

dist2 q; �ðqÞð Þ

¼
Pn

i;j¼1

Pn
k¼1

ðf i
k � �

i
kÞ x

k
q þ si

� � Pn
l¼1

ðf
j
l � �

j
lÞ x

l
q þ sj

� �
gij;

where gij is the component ði; jÞ of the constant metric tensor.

To find the minimum of this distance function, we need to

calculate its directional derivative in the direction given by v,

where v is the tangent vector at q of the straight line c linking

q to q0 ¼ �ðqÞ. This straight line, linearly parameterized

between 0 and 1, is given by

c : ½0; 1� ! R
n

t 7! cðtÞ ¼ xq þ ðx
0
q � xqÞt:

Notice that the distance function between q and �ðqÞ depends

only on the coordinates of q, but not on those of �ðqÞ. Thus, we

can write dist q; �ðqÞð Þ ��= �ðuqÞ, where � is a function of uq only.

The directional derivative of �2 in the direction v is thus

@v�
2 �
�=

d

dt
ð�2

 cÞðtÞ

���
t¼0

¼
Xn

m¼1

@m�
2
�
cðtÞ
� dcmðtÞ

dt

����
t¼0

¼
Xn

m¼1

@m�
2ðxqÞ ðxq0

m � x m
q Þ;

where

@m�
2ðxqÞ ¼

@

@xm
�2ðxqÞ

¼ 2
Pn

i;j¼1

ð f i
m � �

i
mÞ

Pn
k¼1

ð f
j
k � �

j
kÞ x

k
q þ sj

� �
gij;

and

ðxq0
m
� xq

m
Þ ¼

Pn
i¼1

ð f m
i � �

m
iÞ xq

i þ sm:

Let us write wm ¼ ðxq0
m � xq

mÞ and ai
j ¼ ð f

i
j � �

i
jÞ. Then

@v�
2
¼

Pn
i;j;m¼1

ai
mwjgijw

m ¼
Pn

i;j;m¼1

gijw
iaj

mwm:

To obtain the last equality, we have used the symmetry of the

metric tensor, gij ¼ gji, for all 1 � i; j � n. The last expression

may be written in compact matrix form:

@v�
2
¼

t
r�2
ðxqÞ

� �
w

¼
twGAw

¼ twGðF � InÞw

¼
twGFw � twGw;

where A ¼ ðai
jÞ

n
i;j¼1, w ¼ ðF � InÞuq þ s and G ¼ tG is the

matrix representing the constant metric tensor in the
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Figure 6
Illustration of the tangent-space representation of an isometry � in the
one-dimensional Euclidean space. Let � be an inversion; then the
differential map d�q carries the vector v in the tangent space at q into the
vector v0 ¼ d�qðvÞ in the tangent space at q0 ¼ �ðqÞ. With the tangent-
bundle representation of p and p0 (the equivalence classes ½ðup; 0Þ�� and
½ðup0 ; 0Þ��), we see that the tangent-space representation of � is
completely equivalent to the usual manifold one.



coordinate system x. Indeed,
Pn

m¼1 aj
mwm ¼ ðAwÞj (the

component j of the vector Aw), hence
Pn

i;j;m¼1 gija
j
mwmwi ¼Pn

i;j¼1 gijw
iðAwÞ

j
¼ twGðAwÞ ¼ twGAw. The function � is

minimal (it can never be maximal, unless in a pure translation,

where it is constant) if

@v�
2 ¼ twGFw� twGw ¼ twGðF � InÞw ¼ 0: ð3Þ

Note that ðF � InÞw can never be perpendicular to w unless w

= 0. Let us find all the points satisfying this equation; several

different cases may be distinguished:

(i) w = 0 and F ¼ In. Then

w ¼ s ¼ 0:

The symmetry operation is the identity.

(ii) w = 0 and F 6¼ In. The symmetry operation has at least

one fixpoint. Indeed, we have

w ¼ ðF � InÞxq þ s ¼ 0 , Fxq þ s ¼ xq;

the equation of the fixpoint(s) of the symmetry operation.

(iii) w 6¼ 0 and F 6¼ In. Then twGðF � InÞw ¼ 0 if and only

if ðF � InÞw ¼ 0. Let P 2 GLnðRÞ be a transformation matrix

such that PFP�1 �
�= U is an orthogonal matrix, which may be

written in the irreducible form (Engel, 1986)

where

Ui ¼
cos �i � sin �i

sin �i cos �i

� �
; 1 � i � m:

�i is supposed to be different from k	, k 2 Z, as otherwise Ui

would be equal to 	I2 and would in fact be a part of the first

block of the matrix U. In our case, at least one of the values of

this first block is necessarily +1, as otherwise U would be

invertible and this would correspond to the previous case,

where w = 0. Suppose that the number of values +1 is r. Thus,

we have

ðF � InÞw ¼ 0, PðF � InÞP
�1Pw ¼ 0

, ðU � InÞPw ¼ 0;

with

U � In ¼
0r 0r�ðn�rÞ

0ðn�rÞ�r B

 !
;

where B is an invertible ðn� rÞ � ðn� rÞ matrix. Right

multiplication of the last equation above by P gives

ðF � InÞw ¼ 0

, PðF � InÞw ¼ 0

, PðF � InÞ
�
ðF � InÞxq þ s

�
¼ 0

, PðF � InÞP
�1
�
PðF � InÞP

�1Pxq þ Ps
�
¼ 0

, ðU � InÞ
2
Pxq þ ðU � InÞPs ¼ 0:

Let us now write the following decomposition:

Pxq ¼
ðPxqÞk
ðPxqÞ?

� �
; Ps ¼

ðPsÞk
ðPsÞ?

� �
;

where ðPxqÞk and ðPsÞk contain the first r components of Pxq

and Ps, respectively, and ðPxqÞ? and ðPsÞ? the last n� r ones.

From the last equation above, we obtain the following

condition:

BðPxqÞ? þ ðPsÞ? ¼ 0: ð5Þ

Thus, it can be concluded that every point q of which the

coordinates xq satisfy the expression

ðPxqÞ? ¼ B�1
ðPsÞ? ð6Þ

has a minimal distance to its image. Note that relation (6)

consists of n� r linearly independent equations which can be

seen as constraints on the n coordinates of the point; this

means that r of the n coordinates of the point are free, they

may be chosen arbitrarily. Equation (5) shows that each of

these constraints may be written as f ðxÞ ¼ 0 (where f is a

function of x). As P and B are invertible matrices, all the

gradients of each of these functions are linearly independent.

Thus, we can say that the set

N ¼ fq 2 Rn
j BðPxqÞ? þ ðPsÞ? ¼ 0g

is a submanifold of Rn of dimension r. Every point q of N is

such that its image under the symmetry operation stays in N.

Indeed, if xq0 ¼ Fxq þ s, then

Pxq0 ¼ PFxq þ Ps ¼ PFP�1Pxq þ Ps ¼ UPxq þ Ps

and

ðPxq0 Þ? ¼ ðUPxqÞ? þ ðPsÞ?

¼ ðBþ Iðn�rÞÞðPxqÞ? þ ðPsÞ?

¼ �ðPsÞ? þ ðPxqÞ? þ ðPsÞ?

¼ ðPxqÞ?;

the coordinates of the point q 2 N and its image are such that

ðPxq0 Þ? ¼ ðPxqÞ?, which means that both satisfy relation (5).

The corresponding symmetry operation has no fixed point and

it is not a pure translation either, as the matrix part is not

supposed to be equal to the identity.

(iv) w 6¼ 0 and F ¼ In. The corresponding symmetry

operation is a pure translation. Indeed, we have

w ¼ s 6¼ 0:

The derivations just presented here are treated in several

textbooks, for instance in the monograph written by D.

Schwarzenbach and G. Chapuis (Schwarzenbach & Chapuis,

2006), or that of H. Burzlaff and H. Zimmermann (Burzlaff &
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Zimmermann, 1977). However, the concepts used to obtain

them are completely different. Thus, some new definitions

of notions commonly used in crystallography may be

proposed:

Definition 1. A symmetry element of a Euclidean symmetry

operation is the submanifold N of the Euclidean manifold

consisting of all points such that the distance between one of

these points and its image is minimal. This submanifold is

invariant under the symmetry operation (it corresponds to its

image).

Definition 2. The intrinsic translation of a Euclidean symmetry

operation is the element w ¼ xq0 � xq ¼ ðF � InÞ xq þ s,

where q 2 N and q0 ¼ �ðqÞ. It may be considered the tangent

vector at q of the straight line linearly parameterized between

0 and 1, linking q to q0 ¼ �ðqÞ.
(i) A symmetry operation � for which

min
q2Rn

dist
�
q; �ðqÞ

�
¼ 0

is called a fixed-point operation.

(ii) A symmetry operation � for which

min
q2Rn

dist
�
q; �ðqÞ

�
¼ c> 0

is called an operation without a fixed point.

Consequence. As �ðqÞ ¼ q0 2 N when q 2 N, the intrinsic

translation w ¼ xq0 � xq can never be perpendicular to N, it is

always contained in N. Roughly speaking, we can say that it is

the ‘minimal vector of translation’. Any point q which is not in

N is such that the distance between itself and its image �ðqÞ is

bigger than the length of w. Any point in N is not under the

effect of the matrix part of the operation, but only under the

translation part, whereas a point out of N is under the effect of

both.

These definitions are particularly interesting if we consider

the tangent-space representation of a symmetry operation �.

Indeed, let us select a point q in the symmetry element N as a

tangent point; then, the differential map d�q : TqR
n
! T�ðqÞR

n

carries vectors of the tangent space at a point of N to the

tangent space at another point of N, and xq0 � xq corresponds

to the intrinsic translation of �. Thus, we obtain the precise

intrinsic characteristics of the operation in a clear and simple

way, without resorting to any change of coordinates! We

therefore understand why the translation part s does not

correspond to the intrinsic translation when the origin of the

coordinate system is not in the symmetry element N. Indeed,

every point p of Rn may be seen as the tip of a vector v linking

the origin to itself. The image of p is then simply the image of v

(through the differential map of the operation) the initial

point of which is at the image of the origin point. When the

origin point is in N, it is only under the effect of the intrinsic

translation of the symmetry operation and it is this translation

which appears in the image of the point p:

xo ¼ 0 and xo0 ¼ w

xp ¼ v and xp0 ¼ Fvþ w:

When the origin is not in N, it is under the effect of both parts

of the operation, hence the origin and its image are not linked

by ‘the minimal vector of translation’ w. The intrinsic trans-

lation neither appears in the image of the origin, nor in the

image of any point p:

xo ¼ 0 and xo0 ¼ s

xp ¼ v and xp0 ¼ Fvþ s:

As an example, let us consider the symmetry operation � of

the three-dimensional Euclidean space R3, written as 
u01

u02

u03

!
|fflfflffl{zfflfflffl}

u0

¼

 
0 1 0

1 0 0

0 0 �1

!
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

F

 
u1

u2

u3

!
|fflffl{zfflffl}

u

þ

 
1

1

1

!
|ffl{zffl}

s

; ð7Þ

where ðu1; u2; u3Þ is the natural coordinate system of Rn.

Some algebra shows that

w ¼ ðF � I3Þuþ s ¼

�u1 þ u2 þ 1

u1 � u2 þ 1

�2u3 þ 1

0
@

1
A

is never equal to 0. We also see that F 6¼ I3. This corresponds

typically to the third case described above. For determining

the symmetry element and the intrinsic translation, we can

either use the technique developed above or, equivalently,

calculate the set of points q such that the distance between q

and �ðqÞ is minimal. Following the first method, we first need

to derive the matrix P such that U ¼ PFP�1 has the form of

the matrix in expression (4). This matrix is

P ¼
1

2

ffiffiffi
2
p ffiffiffi

2
p

0

�
ffiffiffi
2
p ffiffiffi

2
p

0

0 0 1

0
@

1
A:

Thus, we have

U ¼

1 0 0

0 �1 0

0 0 �1

0
@

1
A

and

ðU � InÞ ¼

0 0 0

0 �2 0

0 0 �2

0
@

1
A with B ��=

�2 0

0 �2

� �
:

Equation (5) becomes in this case:ffiffiffi
2
p
ð�u1 þ u2Þ

2u3

� �
¼

0

1

� �
:

We obtain u1 ¼ u2 and u3 ¼ 1
2. The symmetry element of this

operation is then

N ¼ q 2 R3
j uq

1 ¼ uq
2 and uq

3 ¼ 1
2

� �
:

Finally, the intrinsic translation is
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w ¼

1

1

0

0
@

1
A:

Thus, the symmetry operation given by relation (7) corre-

sponds to a screw rotation, the submanifold N is the screw axis

and w is the screw vector. It is quite likely that these results

could have been derived faster using relation (3) directly.

3.2. Referring symmetry operations to any origin

After having obtained a general method for calculating the

intrinsic translation of a symmetry operation, let us now derive

the expression of a particular operation in a (natural) coor-

dinate system with an arbitrary origin. Assuming that the

matrix and translation parts are known, we shall use the

tangent-bundle representation of a point for this task. Recall

that in the Euclidean manifold a point p of coordinates up is

represented, in the tangent bundle, as

ðup � v; vÞ;

where v 2 Rn is a parameter which is in fact a vector of the

tangent space at the point q of coordinates up � v. Also

remember (Kocian et al., 2009) that the image of a point p

under a Euclidean symmetry operation � may be written as

�ðupÞ ¼ �ðup � vþ vÞ ¼ �ðup � vÞ þ d�qðvÞ: ð8Þ

If we consider v and d�qðvÞ as elements of tangent spaces,

relation (8) must be written as

d�q : ðup � v; vÞ 7�! �ðup � vÞ; d�qðvÞ
� �

:

As v is a free parameter, d�q (where uq ¼ up � v) is a map not

only between one but between any tangent space and its

image. We then write d� instead of d�q, which thus becomes a

map on the tangent bundle. Interestingly, it carries the

equivalence class of any point to the equivalence class of its

image. Indeed, this can be shown by considering the repre-

sentation of � and d�q in coordinates:

u0 ¼ Fuþ s and v0 ¼ Fv:

Then

d� :
up � v

v

� �
7 �!

Fðup � vÞ þ s

Fv

� �
; ð9Þ

where Fðup � vÞ þ s ¼ ðFup þ sÞ � Fv. Thus

Fðup � vÞ þ s; Fv
� �

belongs to the equivalence class of ðFup þ s; 0Þ. d�, such as

represented in expression (9), is called the tangent-bundle

representation of the symmetry operation �, since it carries

the tangent-bundle representation of a point (the equivalence

class of a point) into the tangent-bundle representation of its

image (the equivalence class of the image). In matrix notation

d� becomes 
up � v

v

!
7 �!

 
F 0n

0n F

! 
up � v

v

! 
s

0

!
: ð10Þ

In order to motivate and illustrate the considerations above,

we take the example of an isometry � in the two-dimensional

Euclidean manifold R2 endowed with the natural coordinate

system u ¼ ðu1; u2Þ. Let � be a glide plane, i.e. a reflection

through the mirror line ðu1; u1Þ cutting u1 at a, followed by the

translation ðb; bÞ. As the translation is parallel to the mirror

line, it corresponds to the intrinsic translation. The aim is to

derive the matrix and translation part of this glide plane in the

coordinate system ðu1; u2Þ. The matrix part F is

F ¼
0 1

1 0

� �
:

To obtain the translation part, we could perform a change of

coordinates in order to have the new origin on the symmetry

element, work out the expression of the isometry in this new

coordinate system, and return to the previous one. This

traditional method is perfectly correct, but long and cumber-

some. By using the tangent-bundle representations of points

and symmetry operations, we can reach the same result

without carrying out any change of coordinates at all. Indeed,

let o be the origin of the coordinate system, the coordinates of

which are uo ¼ ð0; 0Þ. Its tangent-bundle representation is

ð�v1; �v2; v1; v2Þ, v ¼ ðv1; v2Þ 2 R
2. Through d�, it becomes

�v1

�v2

v1

v2

0
BB@

1
CCA 7 �!

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0
BB@

1
CCA
�v1

�v2

v1

v2

0
BB@

1
CCAþ

s1

s2

0

0

0
BB@

1
CCA:

Let �v ¼ ða; 0Þ. The point q, such that uq ¼ �v ¼ ða; 0Þ, lies

on the glide plane; its image is then obtained by adding the

intrinsic translation to its coordinates: uq0 ¼ ða; 0Þ þ ðb; bÞ

¼ ðaþ b ; bÞ. Thus, we have the equation

0 1

1 0

� �
a

0

� �
þ

s1

s2

� �
¼

aþ b

b

� �
;

from which we derive

s1

s2

� �
¼

aþ b

�aþ b

� �
;

the translation part of the isometry in the coordinate system

under consideration.

This example shows the importance of the points defining

the symmetry element of a Euclidean isometry. Thanks to

them, it is possible to obtain the image of any point without

knowing the translation part s. Moreover, a relation between

the translation part s and the intrinsic translation w can easily

be derived. Indeed, for any point q with coordinates uq, lying

on the symmetry element of an isometry �, its image through

this isometry can be written as Fuq þ s, as well as uq þ w,

where F, s and w are, respectively, the matrix part, the trans-

lation part and the intrinsic translation of �. The first

expression is the usual one for the image of any point under

the isometry, while the second is a consequence of the fact that

q belongs to the symmetry element. Thus, equalizing these two

forms, we obtain
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Fuq þ s ¼ uq þ w

, s ¼ ðIn � FÞuq þ w: ð11Þ

The coordinates of the image of any point p, with coordinates

up, are then

Fup þ ðIn � FÞuq þ w:

Indeed,

Fup þ s ¼ Fðuq þ vÞ þ s ¼ Fuq þ sþ Fv

¼ uq þ wþ Fv ¼ uq þ wþ Fðup � uqÞ

¼ Fup þ ðIn � FÞuq þ w:

The tangent-bundle representations of points and Eucli-

dean isometries are very useful tools, because they offer a

framework which is independent of the choice of origin. Even

without performing any change of origin, we can obtain the

representation of an isometry as if the origin lay at any other

place, e.g. on the symmetry element. We have already seen

that any isometry appears not only as a map in the Euclidean

manifold, but also as a linear map between two tangent spaces.

In the tangent-bundle formalism, it now also manifests itself as

a map from a tangent space into itself. Indeed, let p be a point

with coordinates up and � an isometry. The tangent-bundle

representation of p is given by ðup � v; vÞ, where v 2 Rn, and

is transformed, through d�, according to

TqR
n
�! T�ðqÞR

n

uq

v

� �
7 �!

Fuq þ s

Fv

� �
;

where uq ¼ up � v, and F and s are, respectively, the matrix

and translation parts of �. With the equivalence relation�, we

obtain the equivalent image point in the tangent space at q:

Fuq þ s

Fv

� �
�

Fuq þ s� ðF � InÞuq þ s
� �

Fvþ ðF � InÞuq þ s
� �� �

¼
uq

Fvþ s0

� �
;

where s0 ¼ ðF � InÞuq þ s. Thus, we effectively obtain a map

which transforms a vector v 2 TqR
n into the element

Fvþ s0 2 TqR
n. In particular, in the case of the tangent space

at the real origin o of the coordinate system, we obtain

ToR
n
�! T�ðoÞR

n

0

v

� �
7 �!

s

Fv

� �
;

and the equivalence relation � affords

s

Fv

� �
�

0

Fvþ s

� �
;

whence Fvþ s is seen to be the image of v in ToR
n. So, an

important corollary emerges: Since the image of v in the

tangent space ToR
n, namely Fvþ s, has exactly the same form

as the image, under �, of an arbitrary point p of coordinates up

in the manifold Rn, namely Fup þ s, the Euclidean manifold

and its tangent space at the origin become truly indis-

tinguishable! A conceptual difference remains, however: the

Euclidean space is a manifold and its tangent space at the

origin is a vector space. Euclidean isometries are affine maps

in the Euclidean manifold and linear maps between tangent

spaces. The translation part s appearing in the expression

above is due to the equivalence relation �, which offers the

possibility of going back to the original tangent space. Fig. 7

illustrates this point for a one-dimensional Euclidean mani-

fold.

3.3. The modulated case

Recall that for the geometrical description of modulated

structures we consider a manifold M, parameterized by the

one-to-one function H : Rn
! M, such that M � Rn and

R
n
� M. Any symmetry operation of a modulated structure ~SS

can be written as ~�� ��= H 
 � 
H�1, where � is a Euclidean

isometry, thus a symmetry operation of the corresponding

average structure S in the Euclidean manifold. There is no

need, therefore, for developing a formalism for finding the

symmetry element and the intrinsic translation of an operation

in this case; they are simply obtained by applying, respectively,

the parameterization H to the symmetry element and the

intrinsic translation of the corresponding Euclidean isometry

�. Indeed, since a symmetry operation of a modulated struc-

ture is given by ~�� ¼ H 
 � 
H�1, where � is a Euclidean

isometry with symmetry element N and intrinsic translation

w, then HðNÞ is the symmetry element of ~�� and
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Figure 7
In coordinates, the inversion operation �, with inversion centre at ða; 0Þ
(in the tangent bundle), is written as u0 ¼ �uþ s, where s (¼ 2a 2 Rþ) is
the translation part, which in fact corresponds to the distance between the
tangent space ToR at the origin o and the tangent space T�ðoÞR at the
image of the origin �ðoÞ. In the tangent-space representation of this
operation, the vector v 2 ToR is carried into the vector v0 2 T�ðoÞR.
Thanks to the equivalence relation� on the tangent bundle, v0 2 T�ðoÞR is
equivalent to the vector v00 2 ToR. The length of this vector v00 is nothing
else than the sum of the length of v0 (which is equal to the length of v) and
the translation part s. The value of v00 then corresponds to that of up. Thus,
we can write v00 ¼ �v0 þ s, which is the same formula as for the
coordinate u in the manifold.



Hðuq þ wÞ �HðuqÞ, where q 2 N, its intrinsic translation.

Thus, symmetry elements such as axes or mirrors are not

straight lines or planes any more, and the intrinsic translation

is not constant: it depends on the point q 2 N. Note that this

holds not only for symmetry operations of a structure ~SS, but

also for any transformation from M to M which can be written

as H 
 � 
H�1, where � is a Euclidean isometry.

Let � be a Euclidean symmetry operation of a structure S in

the Euclidean space and ~�� ¼ H 
 � 
H�1 : M! M be a

symmetry operation of the corresponding modulated structure
~SS ¼ HðSÞ in the manifold M. Also let HðqÞ 2 M be a point

with coordinates HðuqÞ. Recall that the differential map

d ~�� ¼ dH 
 d� 
 dH�1 carries any vector ~vv in the tangent space

at HðqÞ to the vector d ~��ð~vvÞ in the tangent space at the point

Hðq0Þ with coordinates Hðuq0 Þ ¼ HðFuq þ sÞ, where F and s

are, respectively, the matrix and translation parts of the

isometry � (see Fig. 8). Suppose that the point HðuqÞ; ~vv
� �

belongs to the equivalence class of HðupÞ ; 0
� �

, where p is a

point with coordinates HðupÞ. This means that ~vv ¼
�ðuqÞðup � uqÞ, where � is the matrix representing the

differential map dH. Considering v ��= up � uq as a free

n-dimensional parameter, d ~��q becomes a function on the

tangent bundle; as in the Euclidean case, we shall write d ~��
instead of d ~��q. Fig. 8 illustrates the situation in the case where

� is an inversion operation.

The differential map d ~�� ¼ dH 
 d� 
 dH�1 of ~�� carries the

tangent-bundle representation (equivalence class) of any

point of M to the tangent-bundle representation (equivalence

class) of its image through ~��. Indeed,

d ~�� :
Hðup � vÞ

�ðup � vÞv

� �
7 �!

H Fðup � vÞ þ s
� �

� Fðup � vÞ þ s
� �

Fv

� �
; ð12Þ

where F and s are, respectively, the matrix and translation

parts of �, and � is the matrix representing dH. Then, writing

Fðup � vÞ þ s ¼ ðFup þ sÞ � Fv, we have

H Fðup � vÞ þ s
� �

� Fðup � vÞ þ s
� �

Fv

� �
�

H Fðup � vÞ þ sþ Fv
� �

� Fðup � vÞ þ sþ Fv
� �

ðFv� FvÞ

� �
;

the first component is equal to HðFup þ sÞ and the second is 0.

Thus

HðFup þ sÞ; � Fðup � vÞ þ s
� �

Fv
� �

belongs to the equivalence class of HðFup þ sÞ; 0
� �

.

4. Tangent-bundle representation of space groups

The choice of the origin in the representation of space groups

is a recurring problem in crystallography. For any symmetry

operation, it is convenient to place the origin on its symmetry

element. Unfortunately, the different symmetry elements of

the operations constituting a space group do not, in general,

all intersect at one point. Therefore, one privileged point does

not exist and compromises must be made. As mentioned in the

introduction, privileged points do exist, namely those corre-

sponding to sites of high symmetry (Niggli, 1919; Burzlaff &

Zimmermann, 1980) but there might remain some symmetry

elements not containing the high-symmetry points chosen as

an origin. With the formalism developed in the previous

section, this problem disappears, since any point can be

selected as an origin, without changing the real origin of the

coordinate system. Each symmetry operation can then be

described with respect to its own ‘origin’ point lying on its

symmetry element. Let us illustrate our method by the

example of the specific space group P21/c.

In the second monoclinic setting, the space group consid-

ered is generated by a twofold screw axis along the b axis and a

c-glide plane normal to b. In the coordinate system x adapted

to the unit cell, the matrix and intrinsic translation parts of

these two operations are

21 : F1 ¼

�1 0 0

0 1 0

0 0 �1

0
@

1
A; w1 ¼

0
1
2

0

0
@

1
A

8<
:

9=
;

and

c : F2 ¼

1 0 0

0 �1 0

0 0 1

0
@

1
A; w2 ¼

0

0
1
2

0
@

1
A

8<
:

9=
;:

We search for a point onto which to place the origin of our

coordinate system. For this purpose, let us consider the origin

point o, with coordinates xo ¼ 0, and the point q, of coordi-

nates xq lying at the intersection of the symmetry elements

associated with the 21 and c operations. The tangent-bundle

representation of o is simply ð�v; vÞ, where v 2 R3 is a

parameter. Consider the case where �v ¼ xq. The image of
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Figure 8
Illustration of the tangent-space representation of the map ~�� ¼
H 
 � 
H�1 in the one-dimensional manifold M parameterized by the
map H, in the case where � is an inversion operation. The differential map
d ~��q carries the vector ~vv in the tangent space at HðqÞ into the vector
~vv0 ¼ d ~��q0 ð~vvÞ in the tangent space at Hðq0Þ, the image point of q through ~��.
When HðqÞ is on the symmetry element, d ~�� is an endomorphism of TqM,
which implies that the image of the vector ~vv00 is simply �~vv00. With the
tangent-bundle representation of HðpÞ and Hðp0Þ, we notice that the
tangent-space representation of ~�� is completely equivalent to the usual
manifold one.



the point ðxq; �xqÞ through the tangent-bundle representation

of the 21 operation is

F1 03

03 F1

� �
xq

�xq

� �
þ

s1

0

� �
¼

F1xq þ s1

�F1xq

� �
;

where s1 is the translation part of the operation 21 in the

chosen coordinate system (with the chosen origin o). As q is in

the symmetry element of 21, the coordinates of its image are

simply xq þ w1. We then have

F1xq þ s1

�F1xq

� �
¼

xq þ w1

�F1xq

� �
;

which is equivalent to

xq

�F1xq þ w1

� �
;

and write the equivalence as

xq þ w1

�F1xq

� �
�

xq

�F1xq þ w1

� �
:

The image of this last point of the tangent bundle, through the

tangent-bundle representation of the c-glide plane is

F2 03

03 F2

� �
xq

�F1xq þ w1

� �
þ

s2

0

� �
¼

F2xq þ s2

�F2F1xq þ F2w1

� �
;

where s2 is the translation part of c in the chosen coordinate

system. As q is in the mirror plane, the coordinates of its image

are xq þ w2. We then obtain

F2xq þ s2

�F2F1xq þ F2w1

� �
¼

xq þ w2

�F2F1xq þ F2w1

� �
and

xq þ w2

�F2F1xq þ F2w1

� �
�

xq þ w2 þ F2w1

�F2F1xq

� �
:

Scrutinizing the vector part of the equivalence class, we see

that �xq is transfered to �F2F1xq ¼ xq. This shows that the

composition of the two operations corresponds to an inversion

operation 1. Its symmetry element is located halfway between

q and the point of coordinates xq þ w2 þ F2w1. Crystal-

lographers favour the inversion centre at the origin. In this

case, xq þ w2 þ F2w1 must be equal to�xq. The coordinates of

q must then be

xq ¼ �
1

2
ðF2w1 þ w2Þ ¼

0
1
4

� 1
4

0
@

1
A;

they indicate the intersection of the axis and the mirror plane.

A comparison with International Tables for Crystallography

Volume A (2002) shows that our result is in agreement with

the space-group information. Note that the coordinates of

the point q were obtained without calculating s1 and s2,

namely by simply exploiting the intrinsic characteristics of

each symmetry operation. If we require the full symmetry

operations in the chosen coordinate system, however, we need

to know the translations part s. This can be found using

relation (11). We have

s1 ¼ �ðF1 � I3Þxq þ w1 ¼

0
1
2

� 1
2

0
B@

1
CA;

s2 ¼ �ðF2 � I3Þxq þ w2 ¼

0
1
2

1
2

0
B@

1
CA;

and the translation part s3 of the inversion operation is, of

course, zero. We can now write the tangent-bundle repre-

sentation of these three symmetry operations. For any point p,

with coordinates up, we have

21 :
up � v

v

� �
7 �!

F1 03

03 F1

� �
up � v

v

� �
þ

s1

0

� �

¼
F1ðup � vÞ þ s1

F1 v

� �
;

c :
up � v

v

� �
7 �!

F2 03

03 F2

� �
up � v

v

� �
þ

s2

0

� �

¼
F2ðup � vÞ þ s2

F2v

� �
;

1 :
up � v

v

� �
7 �!

�I3 03

03 �I3

� �
up � v

v

� �
þ

0

0

� �

¼
�ðup � vÞ

�v

� �
:

In these representations, any point p is seen as the tip of a

tangent vector at the ‘origin’ point q, with coordinates

uq ¼ up � v. As v 2 R3 is a free parameter, we can choose any

point q as an origin of the manifold and then apply this

tangent-bundle representation of symmetry operations. In

each case, the final result, the image in the manifold, is always

the same. This viewpoint is particularly friendly if for each

operation an appropriate origin point is selected. Indeed, if for

each symmetry operation we consider as an origin a point on

its symmetry element, the image of any point has a very simple

expression where only the intrinsic characteristics of the

operation appear. In our example, selecting q, with coordi-

nates uq ¼ ð0; 1
4 ; � 1

4Þ, as an origin for the 21 and c operations,

and the point o, with coordinates uo ¼ ð0; 0; 0Þ, as an origin

for the 1 operation, we obtain

21 :
uq

up � uq

� �
7 �!

uq þ w1

F1ðup � uqÞ

� �
;

c :
uq

up � uq

� �
7 �!

uq þ w2

F2ðup � uqÞ

� �
;

1 :
0

up

� �
7 �!

0

�up

� �
:

Not one, but two different origins are chosen for the tangent-

bundle representation of our three symmetry operations. This

does not create a problem whatsoever; on the contrary, it

furnishes the possibility of describing each symmetry opera-

tion in a representation in which only its intrinsic character-

istics appear.

Acta Cryst. (2010). A66, 394–406 Philippe Kocian et al. � Symmetry operations on the tangent bundle of a manifold 405

research papers



Finally, note that in the space group P21/c, there are more

than one inversion centre, more than one twofold axis and

more than one glide plane per cell. The others are products of

the three operations above with lattice translations, and their

symmetry elements are obtained by using the technique of

minimizing the distance between a point and its image.

5. Conclusion

As concluded in our previous article (Kocian et al., 2009),

differential geometry is the tool of choice for treating

geometrical and symmetry aspects of crystals. The notion of

tangent space is truly fundamental, because it provides an

infinity of different origin points, being devoid of the necessity

to change the real origin of the coordinate system.

The equivalence relation defined on the tangent bundle of a

manifold is also an essential concept for the transition from

the representation in one tangent space to that in another one.

In fact, in the Euclidean case, the tangent-space representa-

tion of a point can be interpreted as the position of the point in

the Euclidean manifold with respect to a Cartesian coordinate

system with any other origin. This is the reason why we say

that an infinity of different possible origins exist.

Owing to the tangent-space representation of symmetry

operations, we can propose novel, more general definitions of

a symmetry element and the intrinsic translation part of a

symmetry operation. These definitions are simple, as they rely

only on the concept of the minimization of the distance

between a point and its image.

Finally, the combination of the equivalence class of a point

and the tangent-space representation of a symmetry operation

creates a formalism in which symmetry operations can be

expressed relative to any origin. Several symmetry operations

can be referred to different origin points without causing any

difficulties. Thus, each symmetry operation can be written in

such a way that its intrinsic characteristics (notably the

intrinsic translation part) are revealed without effectively

changing the real origin of the chosen coordinate system. We

therefore have an ‘origin-less’ description of symmetry

operations and space groups.
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